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Superluminal Travel Requires Negative Energies
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| investigate the relationship between faster-than-light travel and weak-energy-condition violation,
i.e., negative energy densities. In a general spacetime it is difficult to define faster-than-light travel, and
| give an example of a metric which appears to allow superluminal travel, but in fact is just flat space.
To avoid such difficulties, | propose a definition of superluminal travel which requires that the path to
be traveled reach a destination surface at an earlier time than any neighboring path. With this definition
(and assuming the generic condition) | prove that superluminal travel requires weak-energy-condition
violation. [S0031-9007(98)06583-1]

PACS numbers: 04.20.Gz

A long-standing question asks whether the metriccomesds®> = —dt> + dx>. The star which is “fixed” at
of spacetime can be manipulated to allow very rapide = 1 is in fact traveling on a path which brings it closer
travel between spatially distant points. (I will call this to the Earth. The motion of the destination, rather than
“superluminal” or “faster than light” even though, of any superluminal travel, is what reduces the time to reach
course, | am not proposing to go faster than a lighthe star.
signal in the same metric.) If one allows arbitrary The point of this example is that just examining a met-
states of matter, one can construct such spacetimes¢ may not easily reveal whether it would be reasonable
as in the examples of Alcubierre [1] and Krasnikov to regard the spacetime as containing superluminal travel.
[2,3]. However, these spacetimes require negative energ9ne must have some idea how to distinguish bringing a
densities [3,4]; i.e., they violate the weak energy conditiorplace closer from establishing an arrangement which al-
(WEC), which states thaft,, V+# V" = 0 for any timelike  lows one to travel there more quickly.
vectorV#. The question then is whether it is possible to In some simple cases, however, the spacetime is flat,
have superluminal travel without this violation. except for a localized region not including the points
To answer this question one must first specify whatoetween which one wishes to travel. Then there is
one means by “superluminal travel.” The general ideano question about the distance between the two points,
is that some modification of the metric allows signals tobecause they lie in a single region of Minkowski space.
propagate between two spacetime points that otherwiséhe Alcubierre bubble [1] and the Krasnikov tube [2,3]
would be causally disconnected. However, it may notare of this type if one imagines the tube to be finite in
always be easy to distinguish such superluminal travelength or the bubble to exist for a finite time. A simple
from a situation in which the supposedly distant objectexample of this sort is shown in Fig. 2. The flat metric
has been brought nearby, so that travel at ordinary speetiss been modified in such a way that there is a causal path
allows one to reach it in a short time. P from (¢1,x1) to (12, x2) even though, — x; > 1, — 1.
As a concrete example consider a spacetime with metri€ince there is a connected region of Minkowski space
which includeq(z;, x;) and(z,, x»), it is well defined to say
ds* = (=1 + 4’x?)dr* — 4x(1 — 1*)dxdt that the interval between these points would be spacelike
+ (1 = 2)Y2dx> 1) without_the_ modification to the metric.
In this simple case we can show that WEC must be

in the region—1 < ¢ < 1. Null rays in this metric have Violated, using the existing theorems [5—7] that prohibit
dx *1 + 2tx

—_— = 2
dt 1 — 2 ) ¢
and, for example, a right-going null geodesic from the ori-
gin hasx = ¢/(1 — t?) as shown in Fig. 1. It would ap- Lpmrmmsmmsmmsmosmosmo s no oo
pear that this metric allows superluminal travel. Starting
from the origin one can reach points at arbitrarily lange 0618 o o

intimer < 1. If the Earth were fixed at = 0 and a dis-
tant star att = 1, we could travel from the Earth at= 0
to the star in time1 + +/5)/2 =~ 0.618. ; X

However, this metric has nothing to do with superlu-

minal travel. It is just flat space with an odd choice FiG. 1. A null geodesic in the metric of Eq. (1). It appears
of coordinates: if we lete’ = x(1 — ¢?) the metric be- that one can reach arbitrary distances before 1.
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FIG. 2. Superluminal travel is produced by modifying the FIG. 3. A superluminal travel arrangement. The metric has

shaded region of Minkowski space. The modification is been so arranged that a causal path (solid line) exists between
localized betweeny, and x, and afters,. Because of this A and B, but there are no other causal paths [such a possibility

modification, there is a causal path connecting(r,x;) to is shown (dashed line)] that connect the 2-surfatgsand 3.

(t2,x5), even thoughe, — x; > 1 — 1.

closed timelike curves. LetS be a spacetime that this would be trivial if, for example, the destination sur-
is flat except for a region withv > 1y, x € [x,x2], face were curved in such a way that the destination were
y € [y1,y2], and z € [z1,22], and suppose there is a merely the closest point on its surface to the origin. To
causal pathP that connects pointds, xi,y0,20) and avoid this problem we require that the origin (destination)
(t2, %2, y0,20) With £, — 1; < x, — x;. Suppose also that surface be composed of a one-parameter family of space-
S contains no singularities and that the modified regiorlike geodesics through the origin (destination) point. For-
of S obeys the generic condition [8], i.e., each null mally, we say that a causal pakhis superluminal fromA
geodesic that passes through that region contains a poitd B only if it satisfies the following.
where K[aR,,]Cd[er]KCKd # 0, whereK is the tangent Condition 1—There exist 2-surfaces, aroundA and
vector to the geodesic. Lekr = 1, — r;. Consider a 3 around B such that (i) if p € 34 then a spacelike
new spacetimeS’ which consists of the portion of  geodesic lying in2, connectsA to p, and similarly for
betweenx; andx, with the same metric a§, and with 2p, and (i) if p € 24 and g € 23 then g is in the
points(z, x1,y,z) and(r + Ar,x,,y,z) identified for each causal future ofp only if p = A andg = B.
t, vy, andz. In S’, the pathP is a closed causal curve. This condition might not be sufficient for what one
However, causal paths that travel only through the flatvould call superluminal travel, because it is possible that
part of S’ cannot be closed, becaude < x, — x;. In  while P arrives earlier than any nearby path, it is still
particular no point withy < 1y — Az can be on a closed slower than a path some larger distance away. In this
causal path. So there is a Cauchy horizonSinin the  case, we would not want to say thatwas superluminal.
future of the surface = ¢y, — Ar and in the past of (or Suppose that there is a path satisfying the above
at) the pathP. If S has no singularities, tha’ will condition, and suppose also that the generic condition
not have any either. Thus by Tipler's and Hawking's[8] holds onP. The generic condition holds whenever
theorems [5-7], WEC must be violated somewher§’in  there is any normal matter or any transverse tidal force
Since WEC is a local condition, it must also be violatedanywhere onP. With these assumptions, we will show
at the corresponding point &f. that WEC must be violated at some pointf

In a general spacetime we need a definition of super- First we note thaP must be a null geodesic. H is not
luminal travel. Here | propose the following idea: A a geodesic it can be varied to make a timelike path flom
superluminal travel arrangement should have some patio B. If P is timelike anywhere, then it can be varied to
along which it functions best. A signal propagating alongmake a timelike path from to points of3 3 other thanB.
this best path should travel further than a signal on any Let K be the tangent vector to the geodegic The
nearby path in the same amount of (externally definedyector K must be normal to the surface,. Otherwise
time. To formalize this we construct small spacelikethere would be points o, in the past of points o.
2-surfaces around the origin and destination points an&imilarly, K must be normal t& 5.
say that while the destination is reachable from the origin, Now define a congruence of null geodesics with affine
no other point of the destination surface is reachable fronparametew, normal to2.4, and extend to be the tangent
any point of the origin surface. See Fig. 3. Of coursevector at each point of the congruence.
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Could there be some point € P that is conjugate to
the surfaceX,? If x were an interior point of? then it
would be possible to deforn® into a timelike path. If

x = B then different geodesics of the congruence would

all end atB or points very near t@. These geodesics

would have different tangent vectors, which could not all

be normal toX . Thus no point orP is conjugate ta 4.

Now we look at#f, the expansion of the geodesic

congruence. ltis given b§ = K™.,,, wherem runs over
two orthogonal directions normal &. (All choices of
such directions give the sande) At A we use directions
that lie in 24 and atB we use directions that lie in
5. SinceX, is extrinsically flat atA, the geodesics are
initially parallel, sod = 0 at A. The evolution off is
given by the Raychaudhuri equation for null geodesics,
1

db A
= —RpK“K’ + 20> — 20% — = 07,

o - > (3

where @ is the vorticity, which vanishes heré; is the

shear, and®,;, is the Ricci curvature tensor. Since there

are no conjugate pointg,is well defined all alongP. I
the weak energy condition is satisfied, thep, K*K" =
0, s0df/dv = 0. From the generic conditiord; cannot
vanish everywhere; thus WEC implies

6 <0 (4)
atB. If we can show that insteal = 0 at B, then WEC
must be violated orP.

First we establish a basis for vectorsBat Let E; and
E, be orthonormal vectors tangent Xy at B. Let E3
be a unit spacelike vector orthonormal B and E, with
g(K,E3) > 0. LetE,4 be the unit future-directed timelike
vector orthogonal t&,, E,, andE;. Using these vectors
establish (Riemannian) normal coordinates near The
spaceX ; consists of the points with= z = 0.

Let A(s) be a smooth curve o, with A(0) = A.
Let A(s,v) be the point an affine distanae along the
null geodesic fromi(s). Eventually each geodesic will
pass neaB and will cross the hypersurface with= 0.
Call this crossing poinf’(s) and adjust the length of the
vectorsk on X4 so thatA(s,1) = A'(s). See Fig. 4.

Thez coordinate ofA’(s) must be negative. Otherwise,
points on3p (z = r = 0) would be the future of points
of the geodesics from,.

Let Z be the tangent vector tol(s,v) in the s
direction. By construction, K“Z, = 0 on X,. This
product is constant along each geodesic [8]K$&, = 0
everywhere. If we follow along\/(s) from B we see that

d
0= o (KZ,) = (K“Z4) 2" = K., Z,2°

+ KZ4pZ°. (5)

The only nonvanishing components & are K* and
K*. SinceX'(s) lies in ther = 0 hypersurfaceZ* = 0
everywhere, so only: = 3 contributes toK“Z,,, at B.

A B

A(s)

A(s)

FIG. 4. Congruence of null geodesics frox(s) followed into
the future until they reach points neBrwith + = 0 at a curve
A'(s) with tangent vectoZ. At points nearB, A'(s) must have
a negative; coordinate.

Thus from Eq. (5)
K2, 2" = —K*Z3,7°. (6)

At B, Z3 = 0. We must also haVZ3;be = 0 because
otherwise A’ would become positive. By construction,
K3 > 0,s0K%Z;3,7Z" = 0and

K,7Z,2° = 0. (7)

The congruence of geodesics provides a map from tangent
vectors toA(s) atA to tangent vectors ta/(s) at B. Since
there are no conjugate points, this map is nonsingular and
can be inverted. Thus we can find choicesAd$) that
makeZ = E; or Z = E,. Then we find thatk!.;, = 0
andK?, = 0 and so

6 =K", =0

in contradiction to Eq. (4).

Thus we see that any spacetime that admits superlu-
minal travel on some patR (and thus, according to our
definition, that satisfies condition 1) and that satisfies the
generic condition o, must also violate the weak energy
condition at some point aP.

One can compare this theorem with those of Tipler
[5,6] and Hawking [7] that we used earlier. These
theorems rule out the construction of closed timelike
curves (CTC’s) from a compact region unless there is
WEC violation or a singularity on the boundary of the
causality violating region. The present theorem rules out
the existence, rather than construction, of superluminal
travel, unless there is weak-energy-condition violation.
Spacetime singularities do not provide an alternative
(other than by making the purported path not actually
reach the destination), and the WEC violation must occur
along the path to be traveled.

This raises the question of whether the present theorem
can be extended to rule out more time machines than
the theorems of Tipler and Hawking do. However, this
extension is not easily accomplished. Inside a CTC-
containing region, each point will be in the future of

(8)
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each other point. Thus one cannot construct surfages
and 33 with the required properties. Even if one puts B ”
the pointsA and B on the Cauchy horizon, it is still

not possible to construct spacelike 2-surfaces that do not ¢4

intersect the CTC-containing region. y
Does this theorem mean that superluminal travel is A X

impossible? No, because the weak energy condition is not

obeyed by systems of quantum fields. The best example

is the Casimir effect, and, in fact, the Casimir effect doed G- 5 Circular conducting plates give rise to a negative
- . e o pressure and energy density, and a consequent advancement of
provide an example which satisfies condition 1. the time of arrival of a null ray from to B.
Consider the system shown in Fig. 5. The quantum
expectation value of the electromagnetic stress-energy

tensor between the plates is

path that avoids the system of plates entirely might arrive
; still earlier.

diag—1,1,1,-3). ) The author thanks Arvind Borde, Allen Everett, Larry
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- (10) Note added in proot—While this paper was in press, |
45d learned of unpublished work by R. Penrose, R.D. Sorkin,
and E. Woolgar (gr-qc/9301015) which also discusses

V\}Qe connection between WEC violation and geodesic
advancement.
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Now let 2, be the lower plate anll 3 be the upper plate,
and we can go through the argument above in reverse.
start withd = 0 as before, and now = 0 by symmetry.
As before,® = 0, so the Raychaudhuri equation (3) gives
db _—
Jo = “RaK°K" > 0 (11) *Email address: kdo@alum.mitedu
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